feat: add Explainable class for AI-powered code explanations and examples in README.md

chore: update version to 0.3.1 and add OpenAI dependency in setup.py
This commit is contained in:
Dominik Krenn 2025-09-24 11:06:22 +02:00
parent be848b6416
commit 12c078cd72
5 changed files with 552 additions and 4 deletions

219
README.md
View File

@ -113,7 +113,222 @@ All built-in cast functions handle common edge cases:
if a key is get from `env.get` and it has no default given it will raise
EnviromentKeyMissing(f"Environment variable '{key}' not found.")
Understood, mistress.
Here is the final `README.md` **section** dedicated to your chaotic masterpiece:
---
## `multinut.funky`
A type-aware method overloading system for Python classes.
Provides a decorator-based approach to method overloading that dispatches based on argument types, allowing multiple implementations of the same method with different type signatures.
### Features
* Type-based method dispatch using Python type annotations
* Support for both exact type matching (`type(value) is ann`) and inheritance-based matching (`isinstance(value, ann)`)
* Automatic signature binding and validation
* Clean decorator syntax with `@overload`
* Descriptor protocol support for seamless integration with class methods
---
### Use cases
* Creating polymorphic methods that behave differently based on argument types
* Building APIs with type-specific implementations
* Implementing mathematical operations that work with different numeric types
* Creating flexible data processing methods that handle various input formats
---
### Basic Example
```python
from multinut.funky import Dispatcher, overload
class Calculator:
add = Dispatcher("add")
@overload(add)
def add(self, x: int, y: int) -> int:
return x + y
@overload(add)
def add(self, x: str, y: str) -> str:
return x + y
@overload(add)
def add(self, x: list, y: list) -> list:
return x + y
calc = Calculator()
print(calc.add(1, 2)) # -> 3 (int)
print(calc.add("a", "b")) # -> "ab" (str)
print(calc.add([1], [2])) # -> [1, 2] (list)
```
---
### Complex Type Dispatch Example
```python
from multinut.funky import Dispatcher, overload
from typing import Union
class DataProcessor:
process = Dispatcher("process")
@overload(process)
def process(self, data: str) -> str:
return f"Processing string: {data.upper()}"
@overload(process)
def process(self, data: int) -> str:
return f"Processing number: {data * 2}"
@overload(process)
def process(self, data: list) -> str:
return f"Processing list of {len(data)} items"
@overload(process)
def process(self, data: dict) -> str:
return f"Processing dict with keys: {list(data.keys())}"
processor = DataProcessor()
print(processor.process("hello")) # -> "Processing string: HELLO"
print(processor.process(42)) # -> "Processing number: 84"
print(processor.process([1, 2, 3])) # -> "Processing list of 3 items"
print(processor.process({"a": 1, "b": 2})) # -> "Processing dict with keys: ['a', 'b']"
```
### Error Handling
When no matching overload is found, a `TypeError` is raised with details about the failed dispatch:
```python
# This will raise: TypeError: No matching overload for add(1.5, 2.5)
calc.add(1.5, 2.5) # No overload for float arguments
```
---
## `multinut.explain`
An AI-powered code explanation system that adds `.explain()` methods to classes and functions.
Provides automatic code documentation by leveraging OpenAI's GPT models to generate human-readable explanations of Python code. Classes can inherit from `Explainable` to automatically gain explanation capabilities.
### Features
* Automatic `.explain()` method injection for classes and their methods
* AI-powered code analysis using OpenAI's GPT-4
* Environment-based API key management via `.env` files
* Source code introspection and intelligent explanation generation
* Method-level and class-level explanations
* Graceful error handling for missing API keys or source code issues
---
### Use cases
* Automatically generating documentation for complex classes
* Understanding legacy code or third-party implementations
* Creating educational materials and code walkthroughs
* Quick code review and comprehension assistance
* Onboarding new developers with self-documenting code
---
### Basic Example
```python
from multinut.explain import Explainable
# Set up API key from environment
Explainable.use_env(".env") # Looks for OPENAPI_KEY in .env file
class Calculator(Explainable):
def add(self, x: int, y: int) -> int:
return x + y
def multiply(self, x: int, y: int) -> int:
return x * y
# Explain the entire class
print(Calculator.explain())
# Explain individual methods
calc = Calculator()
print(calc.add.explain())
print(calc.multiply.explain())
```
### Environment Setup
Create a `.env` file with your OpenAI API key:
```env
OPENAPI_KEY=your-openai-api-key-here
```
Or set the API key directly:
```python
from multinut.explain import Explainable
Explainable.API_KEY = "your-openai-api-key-here"
```
---
### Complex Example
```python
from multinut.explain import Explainable
class DataAnalyzer(Explainable):
def __init__(self, dataset):
self.dataset = dataset
self.processed_data = []
def clean_data(self, remove_nulls=True):
cleaned = [item for item in self.dataset if item is not None]
if remove_nulls:
cleaned = [item for item in cleaned if item != ""]
return cleaned
def calculate_stats(self, data):
if not data:
return {"mean": 0, "count": 0}
return {
"mean": sum(data) / len(data),
"count": len(data),
"max": max(data),
"min": min(data)
}
# Get AI explanations
analyzer = DataAnalyzer([1, 2, 3, None, 4])
print("Class explanation:")
print(DataAnalyzer.explain())
print("\nMethod explanation:")
print(analyzer.clean_data.explain())
```
### Error Handling
The system handles various error conditions gracefully:
```python
# Missing API key
try:
Calculator.explain()
except ApiKeyMissingError as e:
print(f"Error: {e}")
# Invalid source code or API issues
print(some_method.explain()) # Returns: "<could not get function explanation: ...>"
```
---

89
multinut/explain.py Normal file
View File

@ -0,0 +1,89 @@
import inspect
import types
from openai import OpenAI
from .env import Environment
class ApiKeyMissingError(Exception):
pass
class Explainable:
API_KEY = None
PROMPT = """
Explain the following Python class code. Use these rules:
- Ignore the Explainable class it's just an internal utility to add the `.explain()` method.
It is not relevant to the explanation as it just adds the `.explain()` method to the class.
Don't even mention it in the explanation. Only mention other inherited classes if they are relevant.
- Focus on the class that is being explained.
- Focus only on what the class and its methods do, practically.
- Do not explain basic Python concepts like `self`, indentation, or decorators.
- Do not guess the purpose or intent of the class just describe what the code does.
- Do not make suggestions for improvement or style.
- Keep the explanation clear, minimal, and to-the-point.
- Your audience is a competent Python developer.
- Use simple language and avoid jargon.
- Be concise and avoid unnecessary detail.
- Provide the explanation in a single paragraph or more if needed.
"""
@classmethod
def use_env(path: str = ".env"):
env = Environment(path)
Explainable.API_KEY = env.get("OPENAPI_KEY")
@classmethod
def explain(cls) -> str:
if cls.API_KEY is None:
raise ApiKeyMissingError("API key is missing. Please set it using `Explainable.use_env()` or by directly assigning `Explainable.API_KEY`.")
try:
code = inspect.getsource(cls)
client = OpenAI(api_key=cls.API_KEY)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": cls.PROMPT},
{"role": "user", "content": code}
]
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"<could not get class source: {e}>"
def __init_subclass__(cls, **kwargs):
for name, obj in vars(cls).items():
if isinstance(obj, types.FunctionType):
setattr(cls, name, Explainable.wrap_with_explain(obj))
super().__init_subclass__(**kwargs)
@staticmethod
def wrap_with_explain(func):
def _with_explain(*args, **kwargs):
return func(*args, **kwargs)
_with_explain.__name__ = func.__name__
_with_explain.__doc__ = func.__doc__
def explain_func():
if Explainable.API_KEY is None:
raise ApiKeyMissingError("API key is missing. Please set it using `Explainable.use_env()` or by directly assigning `Explainable.API_KEY`.")
try:
code = inspect.getsource(func)
client = OpenAI(api_key=Explainable.API_KEY)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": Explainable.PROMPT},
{"role": "user", "content": code}
]
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"<could not get function explanation: {e}>"
_with_explain.explain = explain_func
return _with_explain

224
multinut/funky.py Normal file
View File

@ -0,0 +1,224 @@
import inspect
import typing as t
import random
from functools import wraps
from collections import deque
try:
from typing import get_origin, get_args
except ImportError:
def get_origin(tp): return getattr(tp, "__origin__", None)
def get_args(tp): return getattr(tp, "__args__", ())
Any = t.Any
def is_any(tp):
return tp is Any
def match_union(tp, value_type):
origin = get_origin(tp)
if origin is t.Union:
return any(type_matches(arg, value_type) for arg in get_args(tp))
return False
def type_matches(expected, actual):
if expected is inspect._empty or is_any(expected):
return True
origin = get_origin(expected)
if origin is t.Union:
return any(type_matches(opt, actual) for opt in get_args(expected))
if origin in (t.Optional,):
return match_union(expected, actual)
try:
return issubclass(actual, expected)
except TypeError:
return True
def exact_match(expected, actual):
return (expected is not inspect._empty
and not is_any(expected)
and get_origin(expected) is None
and actual is expected)
def subclass_depth(expected, actual):
try:
mro = actual.mro()
return mro.index(expected) if expected in mro else 9999
except Exception:
return 9999
class Coercions:
table: dict[type, t.Tuple[t.Callable[[t.Any], t.Any], ...]] = {
int: (lambda v: int(v),),
float: (lambda v: float(v),),
str: (lambda v: str(v),),
bool: (lambda v: bool(int(v)) if isinstance(v, str) and v.isdigit() else bool(v),),
}
@classmethod
def can_coerce(cls, target: t.Type, value):
if target not in cls.table:
return False, None
for fn in cls.table[target]:
try:
coerced = fn(value)
if isinstance(coerced, target):
return True, coerced
except Exception:
pass
return False, None
class TinyLRU:
def __init__(self, maxsize=128):
self.maxsize = maxsize
self.d = {}
self.q = deque()
def get(self, key):
return self.d.get(key)
def put(self, key, value):
if key in self.d:
return
self.d[key] = value
self.q.append(key)
if len(self.q) > self.maxsize:
old = self.q.popleft()
self.d.pop(old, None)
class Dispatcher:
def __init__(self, name):
self.name = name
self.overloads: list[dict] = []
self._cache = TinyLRU(256)
def register(self, func, *, priority=0):
sig = inspect.signature(func)
entry = {"sig": sig, "func": func, "priority": int(priority)}
self.overloads.append(entry)
def __get__(self, instance, owner):
@wraps(self)
def bound(*args, **kwargs):
return self._dispatch(instance, owner, *args, **kwargs)
return bound
def _score_entry(self, entry, instance, args, kwargs, expect_type, allow_coercion=True):
sig: inspect.Signature = entry["sig"]
func = entry["func"]
prio = entry["priority"]
try:
bound = sig.bind(instance, *args, **kwargs)
bound.apply_defaults()
except TypeError:
return None
score = 0
coercions_to_apply = {}
defaults_count = sum(
1 for p in sig.parameters.values()
if p.default is not inspect._empty
)
score -= defaults_count
for name, value in bound.arguments.items():
if name == "self":
continue
param = sig.parameters[name]
ann = param.annotation
actual_t = type(value)
if exact_match(ann, actual_t):
score += 30
elif ann is inspect._empty or is_any(ann) or get_origin(ann) is not None and get_origin(ann) is t.Union and any(is_any(a) for a in get_args(ann)):
score += 0
elif type_matches(ann, actual_t):
dist = subclass_depth(ann, actual_t)
score += max(15 - min(dist, 10), 5)
else:
if allow_coercion and isinstance(ann, type):
can, coerced = Coercions.can_coerce(ann, value)
if can:
coercions_to_apply[name] = coerced
score += 8
else:
return None
else:
origin = get_origin(ann)
if allow_coercion and origin is t.Union:
ok = False
for opt in get_args(ann):
if opt is type(None):
continue
if isinstance(opt, type):
can, coerced = Coercions.can_coerce(opt, value)
if can:
coercions_to_apply[name] = coerced
score += 6
ok = True
break
if not ok:
return None
else:
return None
if expect_type is not None:
ret_ann = sig.return_annotation
if ret_ann is inspect._empty or is_any(ret_ann):
score -= 1
else:
if get_origin(ret_ann) is t.Union:
ok = any(type_matches(opt, expect_type) for opt in get_args(ret_ann))
else:
try:
ok = issubclass(expect_type, ret_ann) or issubclass(ret_ann, expect_type)
except TypeError:
ok = True
if not ok:
return None
else:
score += 5
score += prio * 1000
return score, coercions_to_apply
def _dispatch(self, instance, owner, *args, **kwargs):
expect_type = kwargs.pop("__expect__", None)
key = (tuple(type(a) for a in args), tuple(sorted(kwargs.keys())), expect_type)
cached = self._cache.get(key)
if cached:
entry = cached
sig = entry["sig"]
bound = sig.bind(instance, *args, **kwargs)
bound.apply_defaults()
return entry["func"](*bound.args, **bound.kwargs)
candidates = []
for entry in self.overloads:
scored = self._score_entry(entry, instance, args, kwargs, expect_type)
if scored is not None:
score, coercions = scored
candidates.append((score, random.random(), coercions, entry))
if not candidates:
raise TypeError(f"No matching overload for {self.name}{args}")
candidates.sort(key=lambda x: (x[0], x[1]), reverse=True)
best_score, _, coercions, entry = candidates[0]
sig = entry["sig"]
bound = sig.bind(instance, *args, **kwargs)
bound.apply_defaults()
for k, v in coercions.items():
bound.arguments[k] = v
self._cache.put(key, entry)
return entry["func"](*bound.args, **bound.kwargs)
def overload(dispatcher: Dispatcher, *, priority: int = 0):
def decorator(func):
dispatcher.register(func, priority=priority)
return dispatcher
return decorator

View File

@ -2,11 +2,12 @@ from setuptools import setup, find_packages
setup(
name='multinut',
version='0.3.0',
version='0.3.1',
packages=find_packages(),
install_requires=[
"requests>=2.25.0",
"python-dotenv>=0.21.0"
"python-dotenv>=0.21.0",
"openai>=0.26.5"
],
author='Chipperfluff',
author_email='contact@chipperfluff.at',

19
tests/explain-test.py Normal file
View File

@ -0,0 +1,19 @@
from multinut.explain import Explainable, hello
class MyClass(Explainable):
def my_method(self, x):
"""This method does something."""
return x * 2
def another(self, msg: str):
return msg[::-1]
print("=== Class Explanation ===")
print(MyClass.explain())
print("\n=== Method Explanation: my_method ===")
print(MyClass.my_method.explain())
print("\n=== Method Explanation: another ===")
print(MyClass.another.explain())